Antifungal activity of phytochemical compounds of extracts from Mexican semi-desert plants against Fusarium oxysporum from tomato by microdilution in plate method
PDF
XML

Keywords

mexican semi-desert
plant extracts
Fusarium oxysporum
botanical fungicides
inhibitory concentration
phytochemical compounds
tomato
microdilution in plate
ethanolic extracts
Agave lechuguilla
Carya illinoinensis
Lippia graveolens
fungus semidesierto mexicano
extractos de plantas
Fusarium oxysporum
fungicidas botánicos
concentración inhibitoria
compuestos fitoquímicos
tomate
microdilución en placa
extractos etanólicos
Agave lechuguilla
Carya illinoinensis
Lippia graveolens

How to Cite

Tucuch-Perez, M. A., Arredondo-Valdes, R., & Hernandez-Castillo, F. D. (2020). Antifungal activity of phytochemical compounds of extracts from Mexican semi-desert plants against Fusarium oxysporum from tomato by microdilution in plate method. Nova Scientia, 12(25). https://doi.org/10.21640/ns.v12i25.2345

Abstract

Introduction: In several regions of the world, Fusarium oxysporum causes losses on tomato crops; for control it, chemical fungicides are used. Nevertheless, these fungicides causing environmental and resistance problems; therefore, ecological alternatives as plant extracts have been developed. Due to the aim of this work, identify phytochemicals present in ethanolic and aqueous extracts from Agave lechuguilla qualitatively, Carya illinoinensis, Jatropha dioica, Larrea tridentata, and Lippia graveolens and determine their antifungal activity against F. oxysporum.

Method: The plants collected from the northeast of Mexico; crudes and concentrated plant extracts obtained; the inhibition percentage and inhibitory concentration to 50 % (IC50) of F. oxysporum for each plant extract were determinate trough microdilution in the plate method

Results: The essential phytochemicals were flavonoids, saponins, tannins, and quinones. The antifungal activity showed at 1000 mg/L inhibition around 40 to 60% by aqueous crude extracts from leaves of L. graveolens and concentrated aqueous extracts from the stem of L. graveolens, respectively. The ethanolic extracts presented 100 % of inhibition for crude extracts of husk from C. illinoinensis; in leaves and stem from L. graveolens the inhibition started from 250 mg/L; for resuspended extracts, the inhibition started from 125 mg/L with L. graveolens stem and leaves; and finally in roots of A. lechuguilla and leaves from L. graveolens the inhibition started from to 250 and 500 mg/L respectively. The best IC50 was of 8.02 mg/L from the ethanolic resuspended extract of L. graveolens stem.

Conclusion: The ethanolic plant extracts from L. graveolens, A. lechuguilla, and C. illinoinensis, showed 100 % of inhibiting activity against the development of F. oxysporum, representing an alternative for control of F. oxysporum.

https://doi.org/10.21640/ns.v12i25.2345
PDF
XML

References

Aykul, S. & Martínez-Hackert, E. (2016). Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Analytical biochemistry, 508, 97-103.

Bautista-Baños, S. (2006), El control biológico en la reducción de enfermedades postcosecha en productos hortofrutícolas: uso de microorganismos antagónicos. Revista Iberoamericana de Tecnología Postcosecha, 8(1), 1-6.

Blunden, G., Cripps, A.L. & Jewers, K. (1980). Ruizgenin, a new steroidal sapogenin diol from Agave lecheguilla. Steroids, 35(5), 503-510. DOI: https://doi.org/10.1016/S0039-128X(80)80004-3

Bottari, N.B., Lopes, L.Q.S., Pizzuti, K., dos Santos-Alves, C.F., Corrêa, M.S., Bolzan, L.P. & Baldissera, M.D. (2017). Antimicrobial activity and phytochemical characterization of Carya illinoensis. Microbial pathogenesis, 104, 190-195.

Cáceres-Rueda de León, I., Colorado-Vargas, R., Salas-Muñoz, E., Muñoz-Castellanos, L.N. & Hernández-Ochoa, L. (2013). Actividad Antifúngica in vitro de extractos acuosos de especias contra Fusarium oxysporum, Alternaría alternata, Geotrichum candidum, Trichoderma spp., Penicillum digitatum y Aspergillus niger. Revista Mexicana de Fitopatología, 31(2), 105-112.

Carvalho, D.D.C., Alves, E., Camargos, R.B., Oliveira, D.F., Scolfor, J.R.S., de Carvalho, D.A. & Batista, T.R.S. (2011). Plant extracts to control Alternaria alternata in Murcott tangor fruits. Revista Iberoamericana de Micología, 28(4), 173-178.

Castillo, F., Hernández, D., Gallegos, G., Méndez, M., Rodríguez, R., Reyes, A. & Aguilar, C.N. (2010). In vitro antifungal activity of plant extracts obtained with alternative organic solvents against Rhizoctonia solani Kühn. Industrial Crops and Products, 32(3), 324-328.

Chen, J., Shen, Y., Chen, C. & Wan, C. (2019). Inhibition of Key Citrus Postharvest Fungal Strains by Plant Extracts In Vitro and In Vivo: a Review. Plants, 8(2), 26. DOI: 10.3390/plants8020026

Cowan, M.M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Review, 10, 564-582. DOI: 10.1128/CMR.12.4.564

Cruz, S.M., Velásquez, R., Lima, S., Menéndez, M.C., Dardón, R., Córdova, D. & González, J. (2011). Assessment of antioxidant activity of 24 native plants used in Guatemala for their potential application in natural product industry. In International Symposium on Medicinal and Aromatic Plants IMAPS2010 and History of Mayan Ethnopharmacology IMAPS2011 964.

Cruz-Vega, D.E., Verde‐Star, M.J., Salinas‐González, N., Rosales‐Hernández, B., Estrada‐García, I., Méndez‐Aragón, A. & Castro‐Garza, J. (2008). Antimycobacterial activity of Juglans regia, Juglans mollis, Carya illinoensis and Bocconia frutescens. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 22(4), 557-559.

Do Prado, A.C.P., Aragão, A.M., Fett, R. & Block, J.M. (2009) Antioxidant properties of Pecan nut [Carya illinoinensis (Wangenh.) C. Koch] shell infusion. Grasas y aceites, 60(4), 330-335.

FAOSTAT (2018) Page on world food production. http://www.fao.org/faostat/en/. (23 April 2018).

García-Bores, A.M., Espinosa-González, A.M., Reyna-Campos, A., Cruz-Toscano, S., Benítez-Flores, J.C., Hernández-Delgado, C.T. & Avila-Acevedo, J.G. (2017). Lippia graveolens photochemopreventive effect against UVB radiation-induced skin carcinogenesis. Journal Photochemistry and Photobiology B: Biology, 167, 72-81. DOI: 10.1016/j.jphotobiol.2016.12.014

González, I., Arias, Y. & Peteira, B. (2012). Aspectos Generales de la Interacción Fusarium oxysporum f. sp. lycopersici-Tomate. Revista de Protección Vegetal, 27(1), 1-7.

Güereca, M.C.G., Hernández, M.S., Kite, G. & Vázquez, M.M. (2007). Actividad antioxidante de flavonoides del tallo de orégano mexicano (Lippia graveolens HBK var. berlandieri Schauer). Revista Fitotecnia Mexicana, 30(1): 43-49.

Hernández-Castillo, F.D., Castillo-Reyes, F., Gallegos-Morales, G., Rodríguez-Herrera, R. & Aguilar-González, C.N. (2010). Lippia graveolens and Carya illinoensis organic extracts and there in vitro effect against Rhizoctonia solani Kuhn. American Journal of Agricultural and Biological Sciences, 5(3), 380-384. DOI: https://doi.org/10.3844/ajabssp.2010.380.384

Hernández-Lauzardo, A., Bautista-Baños, S. & Velázquez del Valle, M. (2007). Prospectiva de extractos vegetales para controlar enfermedades postcosecha hortofrutícolas. Revista Fitotecnia Mexicana, 30(2), 119-123.

Hernández-Martínez, R., López- Benítez, A., Borrego-Escalante, F., Espinoza-Velásquez, J., Sánchez-Aspeytia, D., Maldonado-Mendoza, E. & López-Ochoa, L. (2014). Razas de Fusarium oxysporum f. sp. lycopersici en predios tomateros en San Luis Potosí. Revista Mexicana de Ciencias Agrícolas, 5(7), 1169-1178.

Jasso de Rodríguez, D., García, R.R., Castillo, F.H., González, C.A., Galindo, A.S., Quintanilla, J.V. & Zuccolotto, L.M. (2011). In vitro antifungal activity of extracts of Mexican Chihuahuan Desert plants against postharvest fruit fungi. Industrial Crops and Products, 34(1), 960-966. DOI: https://doi.org/10.1016/j.indcrop.2011.03.001

Jasso de Rodríguez, D., Trejo-González, F.A., Rodríguez-García, R., Díaz-Jiménez, M.L.V., Sáenz-Galindo, A., Hernández-Castillo, F.D., Villarreal-Quintanilla, J.A. & Peña-Ramos, F.M. (2015). Antifungal activity in vitro of Rhusmuelleri against Fusarium oxysporum f. sp. lycopersici. Industrial Crops and Products, 75, 150-158. DOI: https://doi.org/10.1016/j.indcrop.2015.05.048

Jeong, M.H., Lee, Y.S., Cho, J.Y., Ahn, Y.S., Moon, J.H., Hyun, H.N. & Kim, K.Y. (2017). Isolation and characterization of metabolites from Bacillus licheniformis MH48 with antifungal activity against plant pathogens. Microbial Pathogenesis, 110, 645-653.

López‐Romero, J.C., Ayala‐Zavala, J.F., González‐Aguilar, G.A., Peña‐Ramos, E.A. & González‐Ríos, H. (2018). Biological activities of Agave by‐products and their possible applications in food and pharmaceuticals. Journal of the Science of Food and Agriculture, 98(7), 2461-2474. DOI: 10.1002/jsfa.8738

Marlatt, M.L.J., Correll, J.C., Kaufman, P. & Cooper, P.E. (1996). Two genetically distinct populations of Fusarium oxysporum f. sp. lvcopersici race 3 in the United States. Plant Diseases, 80(12), 1336-1342. DOI: 10.1094/PD-80-1336.

Martínez, N., Vázquez-Alvarado, P., Figueroa, A., Zúñiga, C., Almaguer, G. & Hernández-Ceruelos, A. (2014). Análisis fitoquímico de Jatropha dioica y determinación de su efectoantioxidante y quimioprotector sobre el potencial genotóxico deciclofosfamida, daunorrubicina y metil metanosulfonato evaluado mediante el ensayo cometa TT - Phytochemical analysis of Jatr. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 13(5), 437–457.

Martins, S., Aguilar, C.N., Teixeira, J.A. & Mussatto, S.I. (2012) Bioactive compounds (phytoestrogens) recovery from Larrea tridentata leaves by solvents extraction. Separation and Purification Technology, 88, 163–167. DOI: https://doi.org/10.1016/j.seppur.2011.12.020

Martins, S., Amorim, E.L., Sobrinho, T.J.P., Saraiva, A.M., Pisciottano, M.N., Aguilar, C.N. & Mussatto, S.I. (2013). Antibacterial activity of crude methanolic extract and fractions obtained from Larrea tridentata leaves. Industrial Crops and Products, 41(1), 306-311. DOI: https://doi.org/10.1016/j.indcrop.2012.04.037

Masson, T.L. (1987) Inactivation of red beet β-glucan synthase by native and oxidized phenolic compounds. Phytochemistry, 26(8), 2197-2202.

Méndez, M., Rodríguez, R., Ruiz, J., Morales-Adame, D., Castillo, F., Hernández-Castillo, F.D. & Aguilar, C.N. (2012). Antibacterial activity of plant extracts obtained with alternative organics solvents against food-borne pathogen bacteria. Industrial Crops and Products, 37(1), 445-450. DOI: https://doi.org/10.1016/j.indcrop.2011.07.017

Moreno-Limón, S., González-Solís, L.N., Salcedo-Martínez, S.M., Cárdenas-Ávila, M.L. & Perales-Ramírez, A. (2011). Efecto antifúngico de extractos de gobernadora (Larrea tridentata L.) sobre la inhibición in vitro de Aspergillus flavus y Penicillium sp. Polibotánica, (32), 193-205.

Osorio, E., Flores, M., Hernández, D., Ventura, J., Rodríguez, R. & Aguilar, C.N. (2009). Biological efficiency of polyphenolic extracts from pecan nuts shell (Carya illinoensis), pomegranate husk (Punica granatum) and creosote bush leaves (Larrea tridentata Cov.) against plant pathogenic fungi. Industrial Crops and Products, 31(1), 153-157. DOI: https://doi.org/10.1016/j.indcrop.2009.09.017

Ruiton, C.M.F., Alcarraz, M.R. & Vidalón, M.T. (1998). Flavonoides y alcaloides de Lupinus ballianus CC Smith con actividad antibacteriana y antifúngica. Ciencia e Investigación, 1(2), 71-80.

Sahgal, G., Ramanathan, S., Sasidharan, S., Mordi, M.N., Ismail, S. & Mansor, S.M. (2009). Phytochemical and antimicrobial activity of Swietenia mahagoni crude methanolic seed extract. Tropical Biomedicine, 26(3), 274-279.

Scalbert, A. & Williamson, G. (2000). Dietary intake and bioavailability of polyphenols. The Journal of Nutrition, 130, 2073–2085.

Shami, A.M.M., Philip K. & Muniady, S. (2013). Synergy of antibacterial and antioxidant activities from crude extracts and peptides of selected plant mixture. BMC complementary and alternative medicine, 13, 360.

Sidana, J., Singh, B. & Sharma, O.P. (2016). Saponins of Agave: Chemistry and bioactivity. Phytochemistry, 130, 22-46.

Stuardo, M. & San Martín, R. (2008) Antifungal properties of quinoa (Chenopodium quinoa Willd) alkali treated saponins against Botrytis cinerea. Industrial Crops and Products, 27(3), 296-302. DOI: https://doi.org/10.1016/j.indcrop.2007.11.003

Usman, H., Abdulrahman, F.I. & Usman, A. (2009). Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficusthonningii (Moraceae). African Journal of Traditional, Complementary and Alternative Medicines, 6(3), 289-295.

Villasanti, C. & Pantoja, A. (2013). El cultivo de tomate con buenas prácticas agrícolas en la agricultura urbana y periurbana. http://www.fao.org/3/a-i3359s.pdf. (8 September 2017).

Xiang-ming, C.H.E.N. (2010). Study on Extraction and Separation Conditions of Quinone from Carya cathayensis Peel [J]. Journal of Anhui Agricultural Sciences, 5, 137.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Nova Scientia